北京商报讯(记者 魏蔚)4月15日,抖音公开了算法原理。据抖音算法工程师刘畅介绍,抖音的推荐算法与国内外大部分内容推荐平台相似,包含召回、过滤、排序等环节,重点是学习用户行为。
抖音基于用户行为的推荐方法包含多种技术模型,如协同过滤、双塔召回、Wide&Deep模型等。算法可以在完全“不理解内容”的情况下,找到兴趣相似的用户,把其他人感兴趣的内容推荐给该用户。目前,抖音算法已几乎不依赖对内容和用户打标签,而是通过神经网络计算,预估用户行为,计算用户观看这条内容获得的价值总和,把排名靠前的内容推给用户。为引导算法打破“信息茧房”,抖音算法在多目标建模体系下,设置了专门的探索维度。
简而言之,推荐算法本质上是一套高效的信息过滤系统。在抖音的实际应用中,推荐系统采取“人工+机器”协同的方式进行风险治理,始终有人工运营和治理体系为算法导航;同时多目标体系算法能主动打破 “信息茧房”。
本网站所有内容属北京商报社有限公司,未经许可不得转载。 商报总机:010-64101978 媒体合作:010-64101871
商报地址:北京市朝阳区和平里西街21号 邮编:100013 法律顾问:北京市中同律师事务所(010-82011988)
网上有害信息举报 违法和不良信息举报电话:010-84276691 举报邮箱:bjsb@bbtnews.com.cn
ICP备案编号:京ICP备08003726号-1 京公网安备11010502045556号 互联网新闻信息服务许可证11120220001号